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Abstract

A scheme was developed to model the thermal hydrody-

namic behavior of thermal energy storage salts. The

model included buoyancy, surface tension, viscosity,

phases change with density difference, and void growth
and movement. The energy, momentum, and continuity

equations were solved using a finite volume formulation.
The momentum equation was divided into two pieces.

The void growth and void movement are modeled be-
tween the two pieces of the momentum equations.
Results showed this scheme was able to predict the

behavior of thermal energy storage salts.

1. Introduction

face tension will dominate and the void will form along

the hottest surface of the canister. However, in a micro-

gravity environment, the effects of surface tension and

buoyancy may both be important. In this case the void
location is more difficult to predict. This paper de-

scribes a scheme for modeling void growth and move-

ment with phase change in microgravity environments.

The NORVEX Q_ASA-Oak Ridge Void EX_.X.periment)

computer code was written to mode] the behavior of

phase change material (PCM) in a thermal energy stor-

age (TES) canister [1,2]. The geometry and boundary
conditions were developed to match those of the Ther-

mal Energy Storage Flight Experiment. During the

flight experiment, the phase change material (in this
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Fluoride salts (e.g. LiF, LiF-CaF2, NaF) are common

phase change materials for space-based thermal energy

storage because their heats of fusion and melting points
are suitable for standard cycles and materials. One of

the problems with lithium fluoride salts is the large

density change they experience during phase change (as
much as 30%). As the salt freezes voids will form in a

thermal energy storage canister due to the density in-

crease. Various problems can arise in the canister de-

pending on the void location. For example, hot spots can

develop if the void is located along the canister wall
where heat is being added. Or, ratcheting of the canister
wails can occur if the salt melts but has no adjacent

void to grow into. Thus, it is important to predict where

the voids will form in the thermal energy storage canis-
i

ters.

The position of the void in thermal energy storage canis-
ters is a function of both gravity and surface tension. In
the extreme cases the location of the void is obvious. In

a l-g environment the buoyancy will dominate and the
void will form at the top of the canister (relative to the

direction gravity is acting). In a 0-g environment sur-

Figure 1 Thermal Energy Storage

Flight Experiment hardware

case LiF) will be contained in a canister with a truncat-

ed fight circular cylinder geometry as shown on figure
1. Heat will be added to the outside of the canister to

simulate incident flux in a solar dynamic receiver. Heat
will be removed from the central core to simulate ener-

gy removed by the working fluid of a solar dynamic

power system.
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Thefollowingcapabilitiesarerequiredto modelTES
thermalhydrodynamicbehavior:

Modell-g, 0-g,andmicrogravityconditions.
Trackthephasechangefront.
Predictvoidgrowthandmovement.
Includebuoyancy,surfacetension,andviscouseffects.
Solvecontinuity,momentum,energyequationsin the
phasechangematerial(PCM).
Predictconductionincanister,core,flare.

Thepurpose of this paper is to describe the problems
and solutions of modeling void growth and movement

with phase change in microgravity environments. The

principle application of this work is to model thermal

energy storage media used in solar dynamic power sys-
tems.
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Figure 2 Overall geometry
canister used in NORVEX
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2. Basic Characteristics of Algorithm

The canisters to be used in the first two Thermal Energy

Storage Flight Experiments (TES-I & TES-2) will be
truncated cylinders as pictured in fig_e 1. During the

flight experiments heat will be periodically added to the
outside of the canister to simulate solar flux entering a

solar receiver during the sunlit portion of an orbit. Heat

will be removed from the inside radius of the canister to

simulate heat being removed by the working fluid in a

solar dynamic power system. The geometry in NOR-

VEX is setup to match these canisters as shown in

figure 2. The canisters to be used in the flight experi-
ments have the following dimensions:

rl = 1.80 cm

r2 = 1.90 cm

r3 = 3.48 cm

r4 = 3.58 cm

zl --- 0.00 cm

z2 = 0.10 cm

z3 = 6.99 cm

z4 = 7.09 cm

A cylindrical coordinate system is used. No-slip and

no-penetration boundary conditions are used at the top,
bottom, inner radius, outer radius of the canister. A

periodic boundary condition is used in the azimuthal
direction. NORVEX is set up to accept either a heat

flux or a temperature boundary condition on each sur-

face of the canister.

In the NORVEX computer code, conservation laws are

applied to finite volume cells. Each cell can contain all

liquid, all solid, all void, or any combination of solid,

liquid, and void. The quality of each finite volume cell
is tracked by the fluid fraction (one minus the void

fraction) and the liquid fraction. These are treated as

state variables, applied to each ceil. The position of the
free surface is located in cells with a fluid fraction

between zero and one. The orientation of the free sur-

face is tracked by the gradient of the fluid fraction.
This is similar to the volume of fluid O/OF) of Hirt and

Nichols [3]. In addition, a marker is placed in each cell
to indicate if there is a free surface (marker set to 1 for

cell with surface, 0 for completely full or completely

empty cells). This is redundant information, knowing the
fluid fraction should be enough. However, these mark-

ers can be used to avoid many IF statements when

determining the surface forces and avoiding averaging

across the surface (derivatives should not be assumed

continuous across the surface). Avoiding many IF-state-

ments makes the program run faster. Figure 3 shows

the definition of a general finite volume cell, used in
NORVEX. The state variables, such as temperature,

pressure, liquid fraction, etc. are defined at the center of
each ceil. The velocities are defined at the faces of the

cells. Each velocity component is defined at the face

perpendicular to it.

The energy equation is solved by balancing energy

leaving, entering, and being stored within each finite
volume cell. Energy is transferred in and out of each

cell by both conduction and advection. The energy
stored in each cell is represented by the enthalpy meth-

od. This way the latent heat and sensible heat can be

stored the same way, as enthalpy. The temperature of
each cell is calculated for each cell knowing the entha-

ipy using constitutive relations. A complete description
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Figure 3 Finite volume defi-
nition used in NORVEX

of the energy equations used in NORVEX is given by

Drake [4].

The momentum equation includes buoyancy and viscous

effects. The Boussinesq approximation is used to model

buoyancy. The flow will always be laminar for condi-
tions in the thermal energy storage canisters under con-

sideration, so no turbulence model is included [5]. Sur-

face tension and pressure boundary conditions are in-
cluded for finite volume cells which contain a free

surface. These boundary conditions Will be discussed in

detail in the next section.

The momentum equation is solved in two parts. The
dicretized time derivative of velocity in the momentum

equation is split into two pieces, as shown in equation 1.

V_.__Vn Vn.1_V . V._V _ (I)

P At P At At

Each part of the momentum equation uses part of this
time derivative. The first part of the momentum equa-

tion contains viscosity, gravity, and advection terms.

The second part of the momentum equation contains the

gradient of the pressure.

1st Part of Momentum Equation:

"V'-Vn - div(-pTz _r+_) +p'_ (2)
P At

2nd Part of Momentum Equation:

Vn.z_V" _ _grad (P)
P At

(3)

At a given time step, all quantities in the first part of
the momentum equation except V* can be calculated

from know quantities or expressed in terms of V*.
Thus, the first part of the momentum equation can be

solved directly for V*. The second part of the momen-
tum equation, however, has two unknowns, P and V_''.

But, V *÷_can be eliminated from the equation by taking

the divergence of the second part of the momentum

equation.

div(pV _'_) _ div(pV') = -div(grad(P) )
A_ At

(4)

Then, the continuity equation can be used determine a

value for div(pV"). A detailed description of this solu-

tion of the momentum equation see Wichner, et al. [ 1]

and Drake [4].

In NORVEX, the div(pV _') term represents the rate

that mass is either entering or leaving a finite volume
cell. For most finite cells, the div(pV _÷_) is simply zero

(since the liquid and solid are incompressible). Howev-

er, a cell with a free surface may lose or gain mass

from one time step to the next. In addition, finite vol-

ume cell undergoing phase change will lose or gain
mass if the densities of the solid and liquid phases are

different. Thus, the value of div(pV _'_) needs to be

coupled with the energy and momentum equations. This

coupling will be described in detail in section 4.

The basic sequence of a typical NORVEX time step is

as follows:

(1) update time dependent boundary conditions,

(2) solve the energy equations for temperature,

(3) solve 1st part of momentum equation (vis-
cous, surface tension, buoyancy, and advect-

• ive terms),

(,_) determine void growth or shrinkage based on

phase change,

(5) predict void movement based on solution of

1st part of the momentum equation

(6) correct results of I st momentum equation
with pressure equation, this is also where

continuity is be satisfied, then

(7) go to next time step or quit.



The energy equation is solved before the momentum

equation. Velocities from the previous time step are
used in the advective terms of the energy equation, since

there is no global iteration between momentum and

energy equations. As a result, the energy associated
with the mass flow predicted by the momentum equa-
tions will be accounted for in the energy equation on the

following time step.

3. Boundary Conditions

The z-momentum equation in cylindrical coordinates is

given in equation 5 (before the Boussinesq approxima-
tion was added) [6].

aw aw pv aw aw aP
P_ + °u3-i + x _ ÷ °w_ -- --fi ÷ °g

(5)

a [xaw% ÷ i ÷ f, (6)
+ _' -_t _1 r 2 "_

Gravity and pressure effects are included in this equa-
tion. However, surface tension is not expressed because

it is a boundary force rather than a body force. Obvi-

ously, it is a boundary condition. However, it is a diffi-
cult boundary condition to formulate since the boundary

may be moving and may or may not be orientated paral-
lel to a coordinate axis. For example, the shear stress

caused by variations in surface tension with temperature
could be formulated as follows for an analytical solu-

tion.

av_ = lao_vr (7)

where, OVj8n is the derivative of the velocity compo-
nent along the surface in the direction of the outward
normal of the surface, O is the surface tension, and VT,

is the temperature gradient projected onto the surface.
This would be a difficult boundary condition to imple-

ment if the surface is far from being parallel to one of

the coordinate axes.

However, in a finite volume model, this boundary condi-

tion is a little easier to model. Itcan simply be added

as a force to each cell that contains a free surface. The

orientation of the free surface can be determined from

the fluid fraction. The outward unit normal of the free

surface is given by equation 8.

= _ V(fluid fraction) (8)
g( fluid fzaction) l

The projection of the temperature gradient on the free
surface can be calculated by equation 9.

VT s = VT - (VT" n--)_ (9)

The variation in surface tension is a material property

that is input by the user in NORVEX.

do (10 )
¥- dT

Finally, the force per unit area of free surface can be

calculated by equation 11.

F. = _VT. (11)

This force is added as a source term in the first part of

the momentum equation in NORVEX.

- Similarly, the surface boundary condition caused by the
curvature of the free surface can be expressed as in

equation 12, where K is the curvature of the surface.

Pp=. ,,,,,,,,_o -- P_id- 2 o_ (12 )

And, the boundary condition for wetting can be added
as a force to cells with a free surface that are next to the

wall of the canister, as in equation 13, where L is the

length the surface contacts a wall in the finite volume
cell.

(13)
F_, r = u L cos (contact angle)

Velocity boundary conditions are straight forward. A no

slip boundary condition is used at the solid walls. This
is implemented by creating an imaginary cell on the
other side of the solid wall with a velocity in the oppo-

site direction (but the same magnitude) as the boundary

cell. This opposite velocity is then used to calculate the
viscous forces for the boundary cell. In addition, a no

penetration boundary condition is used at the walls and

the solid/liquid interface.



Finally, a pressure boundary condition needs to be in-
cluded at the free surface. Physically, the pressure at
the free surface should be the pressure of the void (plus

any surface curvature effect). However, the "pressure"
predicted in NORVEX is not the actual pressure. Since
the Boussinesq approximation is used in the momentum

equation, the pressure that is calculated is the real pres-
sure minus the hydrostatic contribution. Thus, the pres-
sure assigned to the free surface must also be adjusted

by the hydrostatic contribution. This is very important
when the free surface is moving due to gravity. The
correction for the pressure boundary condition is calcu-

lated by determining the height (h) of the surface rela-
tive to some datum in the gravity direction. The height
of the surface in each cell is calculated in NORVEX by

projecting the location of the free surface for that cell
onto the gravity vector. Then the correction to the pres-
sure boundary condition is simply p_,q,i_gh,,a=. This
correction is then added to the cells containing a free

surface.

4. Void Growth and Movement

In NORVEX, the void growth and movement calcula-

tions are performed after the first part of the momentum
equation is solved. The results of the void growth and
movement calculations are values of mass gain or loss

for each cell (&-n=,/_t). This will be substituted for the

div(pV _÷') term in the second part of the momentum
equation using continuity (equation 14).

&neen (1.4)
VOlcelldiV(p Vn÷l) cell = at.

The second part of the momentum equation will then
predict the velocities necessary to support the predicted
void growth or movement. In order for the void move-
ment to be coupled correctly with the momentum equa-
tion, all forces that affect void position must be included

in the fast part of the momentum equation. This in-
cludes surface tension forces as well as the correction of

the surface pressure for hydrostatic effects. (Note: the
"pressure" calculated in the second part of the momen-
tum equation will still be the real pressure minus the

hydrostatic contribution.)

Most finite volume cells have no net mass loss or addi-

tion during a given time step. For those cells %m=,/_tis

simply set to zero, since the liquid and solid are both
incompressible. However, cells with a free surface may
have a net change in mass as the surface moves. In

addition, cells undergoing phase change may have a net
increase or decrease in mass if the densities of the solid

and liquid are not the same.

Cells in which PCM is solidifying will' have an increase

in mass if the solid density is greater than the liquid

density. This is due to the liquid pulled into the cell as
the PCM shrinks when solidifying. However, if a cell
solidifies, but the solid density was less than the liquid

density, the cell would lose mass as the PCM expands.
This is similar to a phase change velocity. The rate that
mass is being drawn in or pushed out of a cell undergo-

ing phase change can be calculated from equation 15.

amc,ll_ am,ol a(1_ (lS)
at Poo2 a)

The rate of change of the solid mass in the cell is
known from the solution of the energy equation energy

equation.

The case of p,o,id>p,,qoidis important for NORVEX,
because all thermal energy storage salts being consid-

ered have higher solid densities than liquid densities. A
special problem arises in finite volume cells when the

- solid density is larger than the liquid density. The

problem has to do with allowing the PCM in a cell to
become completely frozen while the cell remains com-
pletely full. During the time step that all the PCM in a
cell becomes completely solid, it will shrink (just like

always), drawing in enough liquid to keep the cell full.
Then, this new liquid will solidify, but now it too
shrinks and the cell is no longer full so it needs to draw

in more liquid. This new liquid also solidifies, shrinks
and requires even more liquid. Without a check this
process would continue indefinitely, which is physically
unrealistic. The cell will never be completely full of
solid. The solution to this problem is to alter the 8rn/_t

specified for the cell for this situation. After the energy
equation is performed, NORVEX checks the enthalpy of
each cell that has become completely solid on that time

step. If the enthalpy is low enough to solidify any satu-
rated liquid entering the cell then the net mass flow into
the cell is prescribed by equation 16 (rather than equa-
tion 15).

amo., a .o,4 p.ol-_l / (zt 

Using equation 16, the cell will be completely full and
solid on the following time step.

Ill



It is important to keep track of the change in mass of
the solid when doing these calculations rather than chan-

ges in liquid fraction. Both the mass of the solid and
the liquid fraction change while the energy equations are

solved. But then, the mass of the solid is a constant

quantity between energy calculations, while liquid frac-
tion may not be. For example, as we have seen, liquid
will be drawn into a cell as the PCM solidifies (for

P_¢>PJ_d). So, at the end of the flow calculation there
is will be more liquid in the cell than at the beginning

of the flow calculation, while the amount of solid re-

mains constant. Thus, the liquid fraction is greater at
the end of the flow calculation. While liquid fraction is

a useful state variable in many situations (particularly

when p_r=p_,_), it is difficult to use to conserve mass
in this case.

Most of the forces which dictate void movement are

included in the first part of the momentum equation.

This includes, surface tension, viscous forces, inertia,

and the additional pressure force due to the variation of

the height of the surface relative to gravity, to make up

for the hydrostatic pressure being subtracted for the
Boussinesq approximation. The assumption used in

NORVEX is these forces have more of an influence on

t_e motion of the free surface than the "pressure" pre-
dicted in the second part of the momentum equation.

This assumption holds mac for all of the cases discussed
in section 5, since the predicted pressures represented

much smaller forces on the surface cells than the surface

tension, etc. This "pressure" was still important, howev-

er, to satisfy continuity within the liquid PCM.

• Given this assumption, the V*'s (predicted in the first

part of the momentum equation) tell us where the sur-
face would like to move if it was not restricted by conti-

nuity. But, the cells containing the surface are, of
course, subject to continuity, so it needs to be addressed.

For each cell containing a flee surface, a desired change

in mass is calculated from the solution of the first part

of the momentum equation.

_ (17)
Omcen I = -VOleell div(oV')

Or ),,ant

If the surface cell is also undergoing phase change, then

the contribution from phase change, described above, is

also included (see equations 15 and 16). Each cell is

subject to obvious constraints: a cell cannot have nega-
tive mass (lower limit = (Om/0t),,i,), and a cell cannot be

overfilled (upper limit = (0m/Ot),_,). If the V*'s predict

a cell to have negative mass, NORVEX will assign that

cell a _rn/0t such that it mass will become zero. Then it

looks for an adjacent cell that can make up the differ-

ence. Similarly, if the V*'s predict a cell to become

over filled, NORVEX will assign a Om/0t such that the

cell will be completely full and again looks for an adja-

cent cell to make up the difference. This enables the

free surface to move from one cell to another. The final

constraint is the total mass in the canister cannot

change. So, equation 18 must be satisfied.

_meell

- o (ze)

The mass is redistributed to satisfy equation 18 by inter-

polating between either (0m/0t),_,, and (_W0t)¢,_ or
between (_n/0t),,,,, and (0m/Ot)m,, whichever is required

to get the sum of all 0m/0t's to be zero. This is a rather
coarse way to redistribute the mass. However it pre-
serves the relative importance of each force that makes

the voids move, it ensures mass will be conserved, and

it is typically needed only when a cell becomes com-

pletely empty or completely full and there is no suitable

adjacent cell to take up the slack. This redistribution of

mass is one point to be targeted for improvement after
the results are obtained from the Thermal Energy Stor-

age Flight Experiments.

5. R_

Most of the capabilities described in the previous sec-
tion have been successfully implemented in NORVEX.

The exceptions are the normal surface tension boundary
condition and wetting. In this section we will look at

some NORVEX predictions to compare the various
forces which drive the liquid motion and the void mo-

tion.

First we will compare the effects of tangentiai surface

tension force with buoyancy forces. To demonstrate

these effects several cases were run with NORVEX. In

all cases gravity was directed in the positive z-direction,
and heat was added to the outer radius of the canister at

a rate of 250 W, while all other sides were adiabatic.

NORVEX was initialized with all liquid in the canister,

and a void at the top (relative to gravity) of the canister.

For the fast case, only buoyancy was included. A
coefficient of volumetric expansion of 2.7x10_K _ and a

6
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gravity environment of 0.1 g were used. In this case
surface tension forces were not included. Figures 4 and

5 show temperature and velocity predictions for this
case at time = 15 sec. These plots represent a cross
section of the canister. The velocities were fairly low in
this case. The maximum velocity wa only 0.008 cm/s.

This small velocity had little effect on the heat transfer.
The temperature distribution was similar to what one
would expect for straight conduction (including conduc-
tion in the canister walls). In addition, free convection
had no noticeable effect on the location of the free sur-

face.

Next a tangential surface tension force was included in
the model. A value for the change in surface tension

with temperature of-233 dynes/cm-K was used. Fig-
tires 6 and 7 show temperature and velocity predictions
at time = 15 sex. The velocities were much larger with
the surface tension forces than without. The speed of

the phase change material was as high as 1.3 cm/s. The
flow also had a much larger effect on the temperature

distribution, particularly near the free surface, where the
flow was greatest. However, the free surface only
moved very slightly from its initial location. So, even
though the surface tension force produced a much larger
flow than gravity-driven buoyancy, tangential surface
tension still could not compete with gravity to locate the
free surface.
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An important conclusion about averaging can be drawn
from figure 7. There is a velocity vector plotted at the
lower end of the free surface which appears to be com-

ing out of the free surface. This was not really predict-

ed by NORVEX. It is a result of the averaging per-
formed by the graphics routine. The graphics routine

has no way of knowing it should not average across the
free surface. This should serve to illustrate the unreal-

istic results obtained when averaging is performed

across a discontinuity. NOR'vEX checks for the free

surface using its markers, therefore does not take aver-

ages or derivatives across it.

To demonstrate that gravity will indeed move the sur-

face to this position, another case was run. This case

used identical properties as the previous case (still 0.1

g). However, the free surface was initialized in a non-

equilibrium position. A hump was included on the free
surface, then NORVEX was allowed to predict the

movement of the free surface by gravity and surface

tension. As shown in Figures 8 and 9, the free surface

tended toward the expected equilibrium position. After
15 seconds, the oscillations of the free surface had

damped out and the flow looked much the same as the

previous case, except there was slightly more salt due to
the extra hump added to the free surface.
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Eventually, if the gravity was reduced low enough, the

tangential surface tension had a noticeable an effect on

the position of the free surface. A case was run with

tangential surface tension forces as before, but gravity
was reduced to 0.01 g. After 15 seconds of simulation,

the tangential surface tension has pulled PCM slightly
off the hot outer radius toward the cooler inner radius as

shown on figure 10.
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Next, NORVEX was run for phase change without a

density difference (p_o_=p_=d). A constant heat flux
boundary condition was used on the canister. Heat was
removed from the canister at 450 W, distributed evenly

over the outer radius of the canister, all other sides were

adiabatic. Gravity acted in the positive z-direction at 1-

g. Figures 11 and 12 show temperature distributions
within the canister after 225 seconds and 475 seconds

respectively. Early in the solidification, the flow of the

liquid PCM affected the shape of the solid-liquid front.

The liquid flowed in a clockwise direction at time = 225
seconds, due to both free convection and tangential

surface tension. As a result, the solid tended to get
thicker farther down the canister (relative to gravity).

%-
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But, by 475 seconds, the liquid PCM was almost entire-

ly at the phase change temperature. Thus, there was no

temperature gradient in the liquid to drive either free
convection or surface tension driven convection. The

only force, at this point, to control the location of the
free surface was gravity (it was dominant in this case

from the beginning). At this point, movement of the

phase change front was controlled almost entirely by
conduction through the solid PCM and canister walls.

As a result, the phase change front moved more quickly

near the void. This makes sense since the heat flux

boundary condition was applied evenly over the outside
radius of the canister, including where the void was

along the canister wall.
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Finally, NOR'vEX was run to demonstrate its ability to

model phase change with a density difference. The

solid density was 2.19 g/cm 3, while the liquid density

was 1.79 g/cm 3. A void was, again, initialized at the

top of the canister relative to gravity. Gravity acted in

the positive z-direction at l-g. Heat was removed from

the end opposite the void. Figures 13 and 14 show the

predicted velocity distributions at time = 10 sec and
time = 140 sec respectively. This case is interesting,

because free convection is dominant over sm'face ten-

sion driven flow. The free convection is established as

heat is conducted along the canister walls. However,

surface tension had almost no effect, because there is

almost no temperature variation along the surface. Also,
as the PCM solidified, the free surface moved. As it

moved, the free surface always remained normal to

gravity, as expected for l-g.
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This discussion does not represent a new understanding

of the physics. It is simply to show that NORVEX can
model these situations. But, as mentioned above, the

normal surface tension and wetting forces are not yet

included in NORVEX. The normal forces should not
effect the cases discussed here very much since gravity

was always dominant in the position of the free surface
and its curvature was small (although wetting may have

an effect). However, if the gravity environment was re-
duced even further, the free surface would move even

farther, the free surface would move even farther, and

the normal component of surface tension would be the
dominant means of holding the PCM in one piece.

Once these forces are added NORVEX should be able

to model much lower gravity conditions.
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6. Conclusion

We have described a scheme to model the thermal hy-

drodynamic behavior of phase change material in ther-
mal energy storage canisters with void growth and mov-
ement. At this time NORVEX can model the behavior

of phase change material as long as gravity is still im-

portant for controlling the location of the free surface.
Phase change with and without density change can be
modeled. The model in NORVEX includes tangential

surface tension, buoyancy, and viscosity forces. Howev-

er, normal surface tension forces are needed to simulate

very low gravity cases. NOR'VEX, particularly the void
movement model, will be improved when the results of

the Thermal Energy Storage flight experiment have been

obtained.
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